Kernel Based Algebraic Curve Fitting

نویسندگان

  • Christian J. Walder
  • Brian C. Lovell
چکیده

An algebraic curve is defined as the zero set of a multivariate polynomial. We consider the problem of fitting an algebraic curve to a set of vectors given an additional set of vectors labelled as interior or exterior to the curve. The problem of fitting a linear curve in this way is shown to lend itself to a support vector representation, allowing non-linear curves and high dimensional surfaces to be estimated using kernel functions. The approach is attractive due to the stability of solutions obtained, the range of functional forms made possible (including polynomials), and the potential for applying well understood regularisation operators from the theory of Support Vector Machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Curve Fitting Support Vector Machines

An algebraic curve is defined as the zero set of a multivariate polynomial. We consider the problem of fitting an algebraic curve to a set of vectors given an additional set of vectors labelled as interior or exterior to the curve. The problem of fitting a linear curve in this way is shown to lend itself to a support vector representation, allowing non-linear curves and high dimensional surface...

متن کامل

Improving the stability of algebraic curves for applications

An algebraic curve is defined as the zero set of a polynomial in two variables. Algebraic curves are practical for modeling shapes much more complicated than conics or superquadrics. The main drawback in representing shapes by algebraic curves has been the lack of repeatability in fitting algebraic curves to data. Usually, arguments against using algebraic curves involve references to mathemati...

متن کامل

Kernel PLS Smoothing for Nonparametric Regression Curve Fitting: an Application to Event Related Potentials

We present a novel smoothing approach to nonparametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our interest to apply the methodology for smoothing experimental data, such as brain event related potentials, where some level of knowledge about areas of different degrees of smoothness, local inhomogeneities...

متن کامل

An improved algorithm for algebraic curve and surface fitting

Recent years have seen an increasing interest in algebraic curves and surfaces of high degree as geometric models or shape descriptors for model-based computer vision tasks such as object recognition and position estimation. Although their invariant-theoretic properties them a natural choice for these tasks, fitting algebraic curves and surfaces to data sets is difficult, and fitting algorithms...

متن کامل

Geometric Interpretation and Precision Analysis of Algebraic Ellipse Fitting Using Least Squares Method

This paper presents a new approach for precision estimation for algebraic ellipse fitting based on combined least squares method. Our approach is based on coordinate description of the ellipse geometry to determine the error distances of the fitting method. Since it is an effective fitting algorithm the well-known Direct Ellipse Fitting method was selected as an algebraic method for precision e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003